CORAL REEF ECOSYSTEM: A MODEL FOR HUMANITY

Arthur Lyon Dahl International Environment Forum (www.iefworld.org)

Photos taken in the Caribbean and the South Pacific 1969-1980

Our challenge: unsustainable development

- Rising population
- Increasing urbanization
- Excessive consumption
- Waste disposal, pollution
- Resource depletion
- Energy crisis
- Social tensions, conflicts
- Economic imbalance
- Materialistic, selfish, hedonistic value system

What is the solution?

Is there an example of a system that has solved these problems?

Principles of system organization

- Organized systems follow similar principles and models
- Organization is determined by information content
- Information is stored in various ways: physical, chemical, biological, social (two knowledge systems: science and religion - values)

Coral reef ecosystem

What is a coral reef?

- Ancient highly-evolved ecosystem
- Rich in its diversity
- Highly productive
- In a resource-poor environment
- Dynamic, changing but resilient

Corals are colonies of animals

N

-

METRIC

Coral reefs line many tropical coasts

The world's largest structures built by biological activity Visible from space Thickness: + 1 km of biological skeletons 500 million people live within 100 km of reefs

Coral Reef Distribution

Grows in shallow tropical waters

Barrier Reef

Atoll: Rose Atoll, American Samoa

Atoll: Butaritari, Kiribati

Builds its own environment

Reef zones

Back reef

Reef flat

Reef crest

Fore reef

Reef slope

Reef slope

Reef crest algal ridge (Pacific)

Reef crest (Caribbean)

Seagrass behind reef

Patch reefs in lagoon

Builds a whole community

Each organism has its form and function: corals

Coralline algae cement reefs

Halimeda algae generate sand

Reef construction: a delicate balance

Corals

Algae

How can the reef help us to find solutions to our problems?

Carrie Bow Cay, Belize, Research Station of the Smithsonian Institution

Energy crisis

- Effective capture of maximum solar energy
- Total productivity, not highest productivity
- Rapid energy transfer
- Efficient energy use
- Little waste

Generates large surface to absorb light

Light is required for coral growth

Algal turf is highly productive

Symbiosis coral/algae

Algal-animal symbioses

Population

- Multiple levels of control, balance, dynamic change
- High efficiency in energy capture allows high density
- System creates additional space for population increase
- Diversity of forms and niches allows higher overall density

High density

High diversity

High reef biodiversity

400 corals, 4000 molluscs, 1500 fish just on the Great Barrier Reef

Complex spatial organization

Coral reef like a city

System creates additional space

Generates large functional surface

Like an apartment building

Coral like a building

Many forms of coral

Reef able to regenerate after damage

Multiple forms of population control - Acanthaster

Parrotfish creating space for coral regeneration

Resource depletion

- Highly evolved integrated system
- High standing stock at upper system levels
- Effective capture and storage of scarce resources
- Efficient management of materials flows

Capture of scarce resources

Alternative replacement systems

Excessive consumption

- High productivity
- Energy efficiency
- Efficient transfers in the system
- Recycling

High algal productivity

Padina (Glovers Reef, Belize)

High stock of fish

Waste, pollution

- High recycling rate
- Little loss from the system
- Diversity in the system
- Multiple control mechanisms, pathways

Efficient waste collection and recycling

Sponges filter water

Intense competition for space

Interactions

- Many symbioses
- Inter-specific collaboration, mutual assistance
- Balanced systems of control and regulation

Shelter

Cultivation of resources

Cleaner fish (collaboration)

Clownfish and anemone (mutual assistance)

Equivalent human values

- Symbiosis = cooperation, respect, solidarity
- Balance = moderation
- Justice a place for everyone
- Decentralization with coordination
- Like wealth creation in an economy

Coral reef vulnerability

Delicately balanced ecosystems
Subject to local and global stresses
The accumulation of interacting impacts multiplies damage
Today coral reefs no longer have the time to recover

Now rapidly declining – like our society

LOCAL IMPACTS: Over fishing

Removing top predators or major herbivores upsets the reef balance Fishing with dynamite, cyanide or iron bars destroys the reef

Dynamite fishing

Impacts from terrestrial runoff

- Land-based sources of sediment smother reefs
- Polluted runoff from cities and agriculture causes eutrophication
Kaneohe Bay, Hawaii, with urban pollution

Eutrophication causes algal overgrowth

Reef smothered by Dictyosphaeria (green bubble algae)

Construction and dredging

physically damage reefs, change water circulation and block species movements

Reefs are the first ecosystem impacted at a planetary scale

Reefs are declining everywhere

In the Caribbean, living coral cover has declined 80% (from 50% to 10%) in 30 years (Toby Gardner, Science, 2003) Is this the canary in the coal mine for ecosystems?

Why?

Coral bleaching

In the stable tropical climate, corals live close to their maximum temperature limit. One degree more can be fatal if it lasts too long. Stressed corals eject their zooxanthellae (algae living inside them) and bleach. If the stress lowers, they can recover their algae. Otherwise they die.

Planetary risk from climate change and CO₂

CO₂ must be kept below 350 ppm

Dissolved carbon dioxide makes the water more acid and reduces calcification

Climate change: predicted hot spots

HadCM3 model, SRES A2a scenario 2030-2039

2050-2059

PCM-PCM model, SRES A2a scenario 2030-2039

Annual degree heating months

If the corals die, algae take their place

Many reefs have shifted from coral to algae, and it is difficult to return to dominant coral cover as algae prevent larval settlement

If growth slows, erosion can exceed construction

State of the reefs (Wilkinson, Status of Coral Reefs of the World: 2004, 2008)

- 19% of world reefs are destroyed
- Of the 16% damaged in 1998, 40% are recovering, but 60% were too badly affected, or subject to other human pressures
- 15% of reefs are threatened by an immediate collapse
- 20% are threatened in the longer term
- So 54% of reefs are destroyed or in danger (70% in 2004)
- The remaining 46% are only threatened by climate change and acidification

Are we destroying the best model for our own future?

The future for coral reefs?

Dawn of reef sustainability?

Sunset on a wasted heritage?

